

Chikungunya Fever: A Decade of Progress in Epidemiology, Pathogen Diagnosis, Prevention, and Vaccine Development

Yinan Wu^{1,2}, Tao Huang^{1,2,3,*}

1. Research Center for Reverse Microbial Etiology, Workstation of Academician, Shanxi Medical University, Taiyuan, Shanxi, Province, 030001, P. R. China.

2. Lvliang Lvliang Center for Disease Control and Prevention, Lvliang, Shanxi, Province, 033099, P. R. China.

3. Ministry of Education Key Laboratory of Coal Environmental Pathogenicity and Prevention, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, Province, 030001, P. R. China.

ABSTRACT

Chikungunya fever is an acute infectious disease caused by the bite of Aedes mosquitoes carrying the Chikungunya virus. This disease has a high incidence rate and significantly impacts public health. Due to climate change and human activities, the infection and global spread of this virus have attracted widespread attention in recent years. Despite a solid research foundation, challenges remain in diagnosis, treatment, and prevention strategies. This article aims to review the latest developments in Chikungunya virus and vaccine research from 2014 to 2024. It provides an overview of the epidemiological characteristics and pathogenic features of Chikungunya fever and systematically analyzes existing treatment and prevention strategies, with a particular focus on progress in vaccine development, including the clinical efficacy of marketed vaccines and recent advancements in research pipelines. The goal is to provide technical support for the prevention and control of Chikungunya fever.

Copyright©2012-2025 Published by Hong Kong Institute of Biologicals Standardization Limited. All rights reserved.

Article History: Submitted: 28/10/2024; Revised: 28/11/2024; Accepted: 01/12/2024

DOI:10.21092/jav.v13i4.116

Key Words: Chikungunya Fever, Chikungunya Virus, Epidemiology, Diagnosis, Vaccine Development

Abbreviations: CHIKV, Chikungunya virus; ECSA, East-Central-South-African; NSAIDs, Nonsteroidal Anti-inflammatory Drugs; NsP, Non-structural Protein; qRT-PCR, quantitative Reverse Transcription Polymerase Chain Reaction; VLPs, Virus-Like Particles.

*Corresponding author, Major in immunology, Tel: +86-0351-3985956

E-mail: thomas_ht@sxmu.edu.cn

Copyright©2012-2025 Published by Hongkong Institute of Biologicals Standardization Limited. All rights reserved.

Introduction

Chikungunya fever is an acute viral disease caused by the Chikungunya virus (CHIKV), primarily transmitted through mosquito bites. Its significant symptoms include high fever and severe joint pain. In recent years, global climate change and increased population movement have contributed to the continuous geographic expansion of Chikungunya fever, making it a significant threat to global public health. According to the literature, the spread of CHIKV often occurs alongside the co-circulation of other mosquito-borne viruses, particularly dengue and Zika viruses, creating complex public health challenges [1,2].

Over the past decade, significant progress has been made in research on Chikungunya fever, particularly in vaccine development. Although there are currently no specific antiviral drugs or widely available vaccines for CHIKV, multiple candidate vaccines are actively being developed using various technological approaches, including live attenuated vaccines, virus-like particle vaccines, and mRNA vaccines^[3]. These advancements offer hope for future vaccination efforts and improved disease control.

Climate change is considered a significant factor driving the spread of CHIKV. Changes

in climatic conditions, such as temperature and precipitation, can influence mosquito breeding and the virus's transmission capacity. Studies have shown that the spread of Chikungunya fever is closely linked to climatic factors, particularly in temperate regions, where climate change may lead to the northward expansion of CHIKV transmission^[4,5]. This implies that outbreaks of Chikungunya fever could occur in previously unaffected areas, placing additional pressure on public health systems.

Moreover, the clinical manifestations of Chikungunya fever often resemble those of other mosquito-borne viral infections, frequently leading to misdiagnosis and missed cases^[6,7]. Therefore, enhancing awareness and diagnostic capabilities regarding Chikungunya fever is crucial for controlling outbreaks. As countries intensify their efforts in vaccine development and virus detection, the future control of Chikungunya fever is expected to improve significantly.

With climate change and increased international travel, the globalization of Chikungunya fever is becoming increasingly evident, posing significant challenges to public health. Consequently, Chikungunya fever is emerging as a prominent research focus. By reviewing literature from 2014 to 2024, this article systematically examines

the pathogenic characteristics, treatment and prevention strategies of Chikungunya fever, as well as the latest developments in vaccine research, providing valuable technical support for future studies and control efforts.

Overview of Chikungunya Fever and Pathogen

1. Epidemiological Characteristics

The epidemiological characteristics of Chikungunya fever indicate that the disease has experienced several large-scale outbreaks over the past few decades. Since the outbreak in India in 2005, the spread of Chikungunya fever has rapidly increased, affecting multiple countries worldwide. Since the disease was first reported in the United Republic of Tanzania in 1952, CHIKV has been known to circulate in sub-Saharan Africa, causing sporadic outbreaks^[8]. In 2004, an East-Central-South-African (ECSA) CHIKV strain emerged in Kenya and subsequently spread to the Indian Ocean islands, causing unprecedented outbreaks, particularly on Réunion Island^[9,10]. The severity of this outbreak led to the emergence of a fourth phylogenetic lineage, known as the Indian Ocean lineage^[11].

The trend of CHIKV spread over the past decade indicates that the virus has expanded its transmission from its initial African regions to multiple areas globally, particularly in Asia and the Americas. In December 2013, the Asian lineage strain was

first reported on the Caribbean island of Saint Martin, triggering another significant outbreak. The virus subsequently spread to over 50 countries in South America, with conservative estimates of infections reaching 1 million^[12]. In 2014, the ECSA lineage strain was reported in northeastern Brazil, where it remains the most prevalent strain^[13].

Reports indicate that despite a decline in prevalence in some countries, the emergence of new variants and the expansion of transmission ranges due to climate change continue to pose a serious global threat^[14]. Since 2020, significant changes have occurred in the regions where CHIKV is prevalent, particularly in Southeast Asia and South Asia, where new trends in the transmission patterns of viral variants have emerged. The transmission capacity and pathogenicity of these variants may influence the development of public health strategies.

CHIKV is primarily transmitted by *Aedes aegypti* and *Aedes albopictus* mosquitoes. These species are widely distributed across tropical and subtropical regions, and climate change is exacerbating their spread, resulting in an expanding range of CHIKV transmission. In particular, warm and humid environments increase mosquito breeding rates, thereby enhancing opportunities for virus transmission. Studies have demonstrated that changes in temperature and precipitation directly affect mosquito survival rates and breeding cycles, influencing the dynamics of CHIKV

transmission^[15]. Consequently, the impact of climate change on mosquito transmission capacity has become a critical factor in studying CHIKV epidemiology.

2. Pathogenic Characteristics

CHIKV belongs to the genus Alphavirus in the family Togaviridae and is a single-stranded positive-sense RNA virus with a genome of approximately 11.8 kb, encoding two main structural proteins: the capsid protein (C) and glycoproteins (E1 and E2)^[16,17]. A schematic diagram of the viral genome structure of CHIKV is shown in Figure 1.

The viral particles of CHIKV are spherical, with a diameter of approximately 70-100 nanometers, surrounded by a lipid bilayer envelope adorned with glycoproteins that facilitate binding to host cell receptors and mediate viral entry into cells. Based on differences in the viral genome, CHIKV can be classified into several subtypes, including East African, Central African, South African, and Asian types, with the Asian subtype playing a significant role in global transmission^[16]. The genetic diversity of the genome enables CHIKV to adapt to various

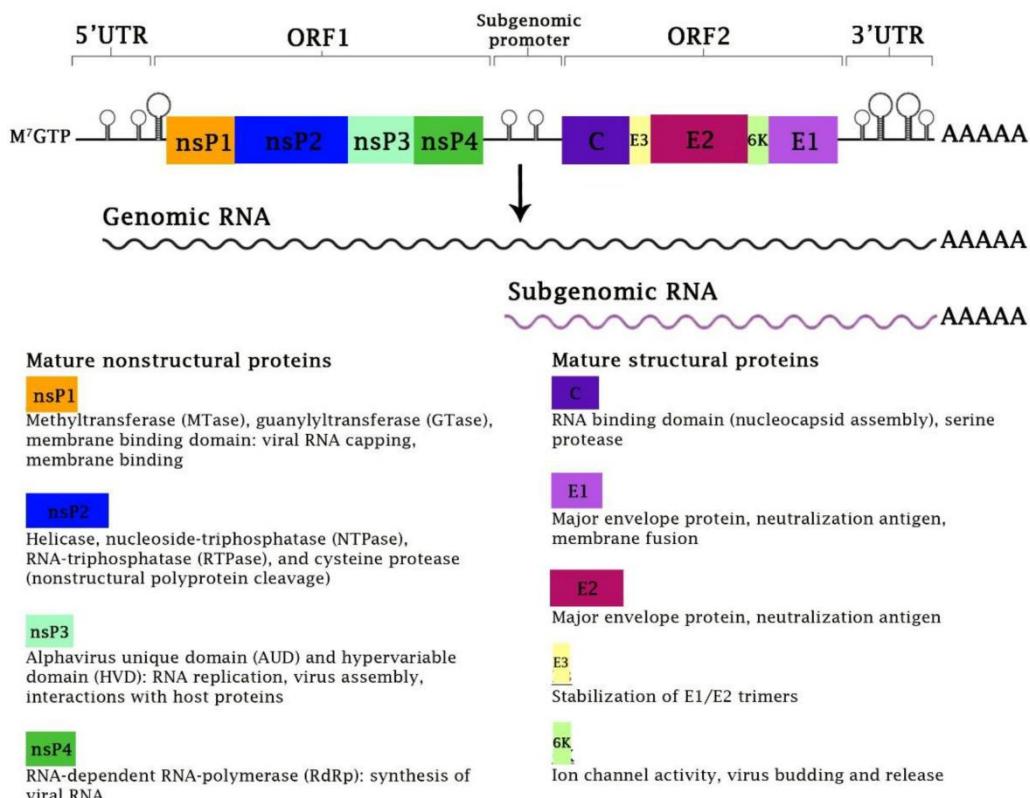


Figure 1: Schematic diagram of the viral genome structure of CHIKV and the main proteins encoded^[17]

environments and hosts, thereby influencing its pathogenicity and transmission capacity.

CHIKV enters host cells by binding to receptors on their surface, primarily through the binding properties of glycoprotein E2, and subsequently gains entry via endocytosis. The virus replicates within host cells, utilizing the host's cellular machinery for assembly and release. CHIKV also evades the immune system by modulating the host's immune response; for example, it can interfere with interferon production, thereby inhibiting the host's antiviral defenses^[18]. Additionally, the inflammatory response triggered by CHIKV infection may result in chronic symptoms such as joint pain, which can significantly impact patients' quality of life. Understanding these pathogenic mechanisms is essential for developing effective vaccines and treatment strategies against CHIKV.

Treatment, Diagnosis, and Prevention

1. Treatment Strategies

Emergency treatment for Chikungunya fever primarily involves supportive care and symptom relief, emphasizing rest, fluid replacement, and pain relief. Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain and fever in patients. Studies have demonstrated that NSAIDs such as ibuprofen and naproxen effectively relieve joint pain and significantly improve patients' quality of life^[19].

However, the use of NSAIDs has some limitations, including potential gastrointestinal discomfort and renal impairment, especially in elderly patients or those with underlying conditions^[16,20]. In dengue-endemic areas, or among travelers to these regions, acetaminophen is the preferred first-line medication for treating fever and joint pain to reduce the risk of dengue hemorrhage.

Moreover, NSAIDs do not act directly on the virus itself, so their effectiveness in controlling the progression of viral infections is limited.

The development of antiviral drugs specifically targeting Chikungunya fever is ongoing, and currently, no approved specific antiviral treatments exist. Researchers are continuously exploring new therapeutic approaches, including small molecule inhibitors, monoclonal antibodies, and RNA interference technology. For example, small molecule inhibitors targeting CHIKV non-structural proteins have demonstrated promising antiviral effects; inhibitors targeting CHIKV non-structural protein 1 (NsP1) have shown antiviral activity by inhibiting viral replication^[21,22]. Although these new drugs have shown potential in laboratory studies, clinical trials are necessary to confirm their safety and efficacy.

2. Diagnosis

Early and accurate diagnosis is essential for effective clinical treatment. However, because the symptoms and signs of CHIKV

infection are non-specific, laboratory-based diagnosis is critical. Diagnosing CHIKV based solely on clinical symptoms is particularly challenging in regions where other mosquito-borne viruses, such as dengue and Zika, are co-circulating.

Laboratory tests for CHIKV infection can be performed using various methods, including virus isolation, serological assays [23], and RNA detection through quantitative reverse transcription polymerase chain reaction (qRT-PCR) [24,25]. Among these, qRT-PCR is more commonly used technique to detect viral RNA, especially during the acute phase of infection.

Importantly, the selection of the testing method should be carefully considered based on the test's purpose and the timing of specimen collection, as shown in Figure 2.

3. Prevention and Control Strategies

Chikungunya fever mainly spreads through mosquitoes, particularly *Aedes aegypti* and *Aedes albopictus*. Therefore, controlling mosquito populations is a crucial preventive measure against the disease. The most common methods of mosquito control include spraying insecticides and using physical barriers such as mosquito nets. In some regions, regular mosquito monitoring

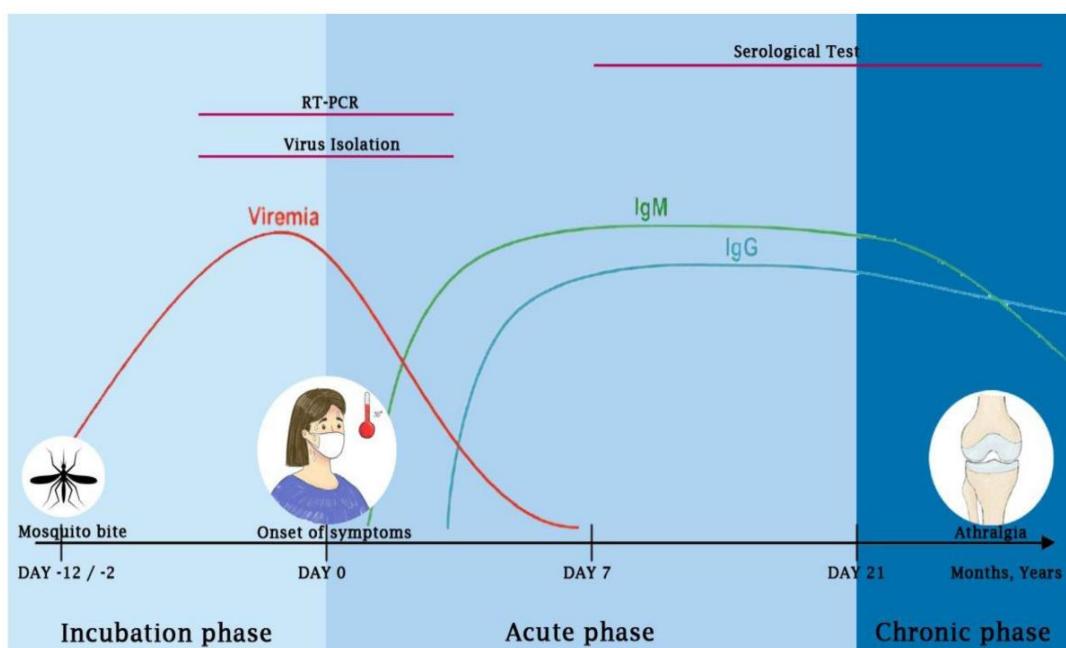


Figure 2. Course of CHIKV infection and its association with different in vitro diagnostic methods^[17].

RT-PCR and virus isolation are best performed during the onset of febrile illness when viremia reaches its peak. Serological tests for detecting IgM and IgG are best conducted 7th days after the onset of symptoms.

and control activities have effectively reduced the incidence of Chikungunya fever^[26].

Environmental management is a crucial component in preventing Chikungunya fever. Measures such as eliminating standing water and improving drainage systems help reduce mosquito breeding sites and lower transmission risks. Additionally, community-based interventions are important preventive strategies. These include educating residents about Chikungunya fever through community health workers. In some countries, joint educational campaigns by governments and communities have enhanced public awareness and participation in mosquito control, yielding significant results^[27].

Personal protective measures should not be overlooked. Using insect repellents is one of the simplest and most effective ways to prevent infection, as they significantly reduce the risk by effectively deterring mosquito bites.

In summary, a comprehensive approach that includes mosquito control, environmental management, and personal protective measures is an effective strategy for preventing Chikungunya fever. In the future, the introduction of new vaccines will further enhance preventive strategies, providing greater assurance in controlling the spread of Chikungunya fever.

Current Status of Chikungunya Vaccine Development

Vaccines, as the most effective preventive measure against viral diseases with a favorable risk-benefit ratio, must elicit both humoral and cell-mediated immune responses to fully prevent reinfection. Since the 1970s, researchers have continuously explored various vaccine platforms to combat this tropical infectious disease, achieving significant progress in vaccine development in recent years^[28]. However, the extensive genetic diversity resulting from the virus's wide variation presents challenges in developing a vaccine that provides broad strain coverage.

Currently, the live attenuated vaccine IXCHIQ® (VLA1553) is the most promising candidate. It has completed clinical trials and received FDA approval for use in the United States, making it the only approved vaccine for Chikungunya fever. However, this alone is insufficient to address the increasing disease burden, especially in endemic areas lacking herd immunity^[29]. Humoral immunity has been identified as a key immune factor in preventing CHIKV infection. Multiple vaccine development approaches exist, and literature reviews indicate that various CHIKV vaccine candidates can elicit strong humoral responses.

The specific technological approaches for development are as follows:

1. Inactivated Vaccines

The CHIKV vaccine was initially developed using formaldehyde in the late 1960s at the Walter Reed Army Institute of Research. The strain was derived from the African CHIKV 168 strain. The culture substrates explored included chicken embryos, suckling mouse brains, and Vero cells, with the vaccine formulation prepared from Vero cells showing good immunogenicity. The CHIKV 168 vaccine and CHIK 15562 provided homologous protection in mice, followed by good heterologous protection^[30,31].

However, the drawback of this technological route is that large-scale cultivation of the Chikungunya virus requires a biosafety level 3 facility, which the vaccine production facilities at that time could not meet, significantly limiting subsequent vaccine translation.

2. Live Attenuated Vaccines

In the 1980s, a vaccine known as CHIK 181/clone 25 demonstrated protective effects in mice and rhesus monkeys following multiple passages and attenuation during preclinical trials. Notably, 98% of vaccinated individuals developed neutralizing antibodies, although a small proportion experienced transient joint pain. Although live attenuated vaccines such as CHIK 181/clone 25 and CHIKV TSI-GSD-218 initially showed success, the development of the CHIKV TSI-GSD-218 vaccine was eventually discontinued^[32].

However, challenges such as biosafety concerns and adverse events have prompted the exploration of alternative platforms, including subunit vaccines, virus-like particles (VLPs), and replication-defective viral vectors. Genetic modification of viruses has also become a research focus, such as designing viral genomes to create attenuated live vaccines that ensure both safety and immunogenicity *in vivo*^[33,34].

A genetically modified live attenuated Chikungunya vaccine (IXCHIQ®), also known as VLA1553, has progressed from laboratory development to market approval. Transferring VLA1553-specific serum to non-human primates has been shown to suppress plasma viremia. Identifying a protective surrogate endpoint for VLA1553 is a crucial step toward vaccine licensure. Neutralizing antibody titers against CHIKV are likely associated with protection against symptomatic CHIKV infections and subclinical seroconversion, supporting their potential use as surrogate endpoints for protection^[35].

The VLA1553 vaccine achieved sero-protection levels through immunological bridging in seronegative participants 28 days post-vaccination, leading to FDA approval in 2023 for use in adults aged 18 and older in the United States. VLA1553 is also the first vaccine approved for the prevention of adult Chikungunya fever, with accelerated development based on serological surrogate protection markers. The vaccine is derived from the infectious clone of the ECSA-IOL

strain of CHIKV from Réunion Island (LR) 2006-OPY1, which has been attenuated to produce a genetically stable vaccine. A schematic diagram of the vaccine strain construction is shown in Figure 3^[36-39].

3. Recombinant Protein Vaccines

Traditionally, vaccine development requires a trade-off between immunogenicity and safety. Live attenuated vaccines typically provide rapid and long-lasting immunity but have lower safety compared to inactivated vaccines. In contrast, inactivated vaccines cannot replicate, which enhances safety but sacrifices immunogenicity, often requiring multiple doses and boosters. Although the live attenuated vaccines, such as IXCHIQ®, have been successfully marketed, they may still cause symptoms similar to actual infections, particularly in immunocompromised populations, including infants.

Recombinant protein vaccines based on virus-like particles (VLPs) utilize viral structural proteins, such as capsid protein, E3, E2, 6K, and E1, to mimic the viral shell while lacking the genetic material necessary for viral replication. This design completely eliminates safety concerns associated with potential viral infections^[37,40]. Currently, five CHIKV candidate vaccines based on the VLP approach are under development. All published CHIKV VLP candidate vaccines are produced by transiently expressing viral structural proteins from DNA plasmids or viral vectors, followed by purification of VLPs from the supernatant of transfected or infected cells. The sequences used in these

CHIKV candidate vaccines are derived from four different CHIKV strains: 06-49, S27, 37997, and DRDE07^[41].

The recombinant protein vaccine based on virus-like particles (VRC-CHKVLP059-00-VP) adheres to good manufacturing practices (GMP) and maintains excellent quality. Phase I trials confirmed the vaccine's safety, tolerability, and positive antibody response, with no serious adverse events reported^[42]. To further evaluate safety and immunogenicity, Phase II clinical results (PXVX0317) demonstrated that a 20 µg dose (0.5 mL), administered via intramuscular injection into the deltoid muscle at a 28-day interval, was safe and well-tolerated, inducing stable and persistent CHIKV neutralizing antibody titers^[43].

4. mRNA Vaccines

With the emergence of new vaccine platforms, the development of vaccines for Chikungunya fever is also advancing. In recent years, innovative platforms such as mRNA vaccines have progressively entered preclinical and clinical trial phases. mRNA vaccines have attracted significant attention due to their rapid development capabilities and favorable safety profiles, demonstrating considerable potential in responding to public health emergencies, such as the COVID-19 pandemic^[44].

Currently, mRNA vaccines targeting Chikungunya fever have demonstrated strong immunogenicity in several clinical trials, effectively inducing the production of neutralizing antibodies, such as Moderna's mRNA-1388^[3,45].

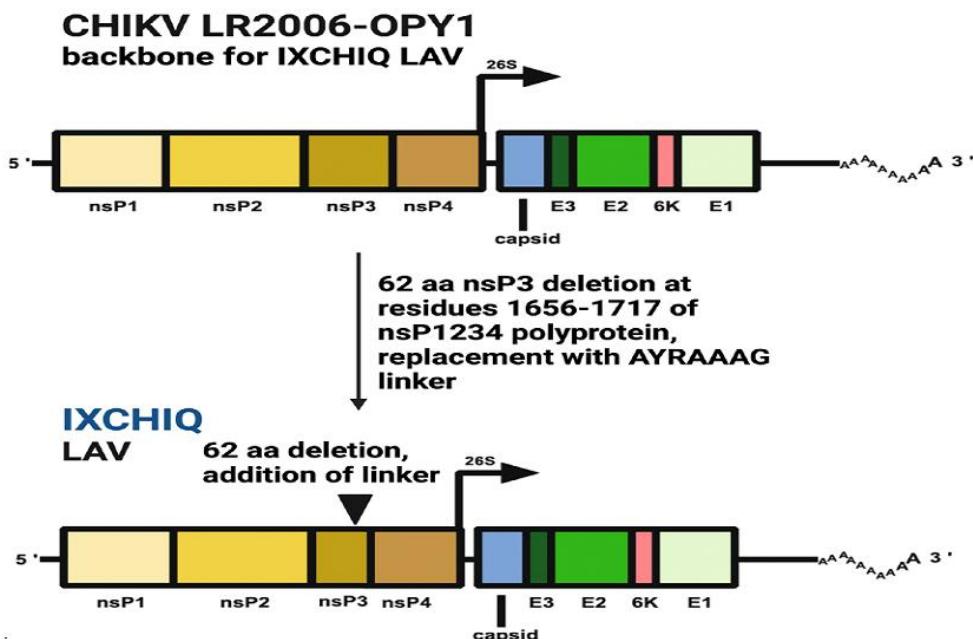


Figure 3. Design of the IXCHIQ live attenuated vaccine [37].

Suzhou Abogen Biosciences Co., Ltd., in China has collaborated with the National Institute for Food and Drug Control to develop an mRNA vaccine based on the wild-type gene of the CHIKV LR2006 OPY1 strain. Through codon optimization, the cDNA containing the structural protein genes C-E3-E2-6K-E1 was cloned into the plasmid ABOP-028 (GENEWIZ). Results from humoral and cellular immune assays demonstrated that the vaccine could induce high levels of neutralizing antibody titers and T cell-mediated immune responses in mice. Additionally, compared to the wild-type vaccine, the codon-optimized vaccine elicited a stronger CD⁸⁺ T cell response but lower neutralizing antibody titers [46].

The Jin Xia team at Fudan University developed an mRNA vaccine targeting the E2-E1 heterodimer, demonstrating that the sE2-E1 heterodimer is a more promising antigen than the sE1 or sE2 monomers. The CHIKV E2-E1-LNP mRNA vaccine outperformed the subunit vaccine sE2-E1 by inducing a strong cytotoxic T lymphocyte (CTL) response, although the CD⁴⁺ T cell response was weaker [47].

5. Recombinant Vector Vaccines

Adenovirus-based vaccine candidates have also shown rapid and durable immune responses. For example, the ChAdOx1-Chik vaccine, which utilizes chimpanzee adenovirus vectors, is being developed to overcome challenges associated with pre-existing immunity to human adenoviruses.

The ChAdOx1-Chik vaccine has entered clinical trials to evaluate its safety, immunogenicity, and efficacy against various CHIKV lineages^[48].

Using baculovirus display technology, the CHIKV envelope proteins E1 and E2 are exposed on the surface of baculovirus particles. Employing recombinant baculovirus as a vector vaccine offers several advantages in production and regulation, including operational safety, ease of high-titer production, non-pathogenicity in mammals, and inability to replicate.

The CHIKV E1 and E2 envelope proteins, along with their native signal and transmembrane sequences, are expressed on the surface of budding baculovirus particles. Immunization of C57BL/6 mice with adjuvant-free recombinant baculovirus induces the production of anti-E2 IgG antibodies, neutralizing antibodies, and specific IFN- γ -producing CD 8^+ T cell responses. A second immunization significantly enhances the antibody response. Mice receiving two doses of the candidate vaccine were fully protected against CHIKV challenge, exhibiting no detectable viremia or clinical signs of disease^[49].

Additionally, measles virus vector vaccines have demonstrated strong immunogenicity and protective effects in non-human primates^[50].

6. Combination Vaccines for Multiple Mosquito-Borne Viruses

Combination vaccines targeting the Chikungunya virus (CHIKV) and other

mosquito-borne viruses, such as dengue virus and Zika virus, have been developed. The advantage of these combination vaccines lies in their ability to simultaneously prevent multiple diseases, thereby increasing vaccine acceptance and coverage^[29]. For example, combination vaccines targeting CHIKV and dengue virus have demonstrated promising results in preclinical studies.

In summary, the development of vaccines for Chikungunya fever is progressing rapidly. Existing research data and clinical trial results indicate that various vaccine platforms demonstrate strong immunogenicity and safety (as shown in Figure 4), offering new hope for controlling the spread and prevalence of Chikungunya fever. As more vaccine candidates become available, a wider range of preventive options will emerge to address the public health challenges posed by this virus.

Conclusion and Prospects

Recent studies show that the geographic range of the Chikungunya virus is gradually expanding, primarily due to climate change and human activities, with the virus's transmission patterns continuously evolving. This expansion significantly increases the risk of viral infection. Over the past decade, research on Chikungunya fever and its pathogens has advanced rapidly, particularly in vaccine development, achieving many important results. These advancements offer

new opportunities for controlling and preventing Chikungunya fever; however, global outbreak trends and challenges posed by viral mutations persist, making the effectiveness and adaptability of vaccines urgent topics for further investigation.

The actual burden of CHIKV is likely underestimated due to the lack of standardized diagnostic tests, the absence of distinctive signs and symptoms, and the overlap of clinical manifestations with other

infections, especially in developing countries. CHIKV infection is typically a self-limiting disease with a low mortality rate (~0.1%). However, frequently occurring joint complications can result in persistent disabilities, significantly impacting public health. This includes a major effect on the quality of life (QOL) of infected patients and imposes substantial economic and social burdens [51,52].

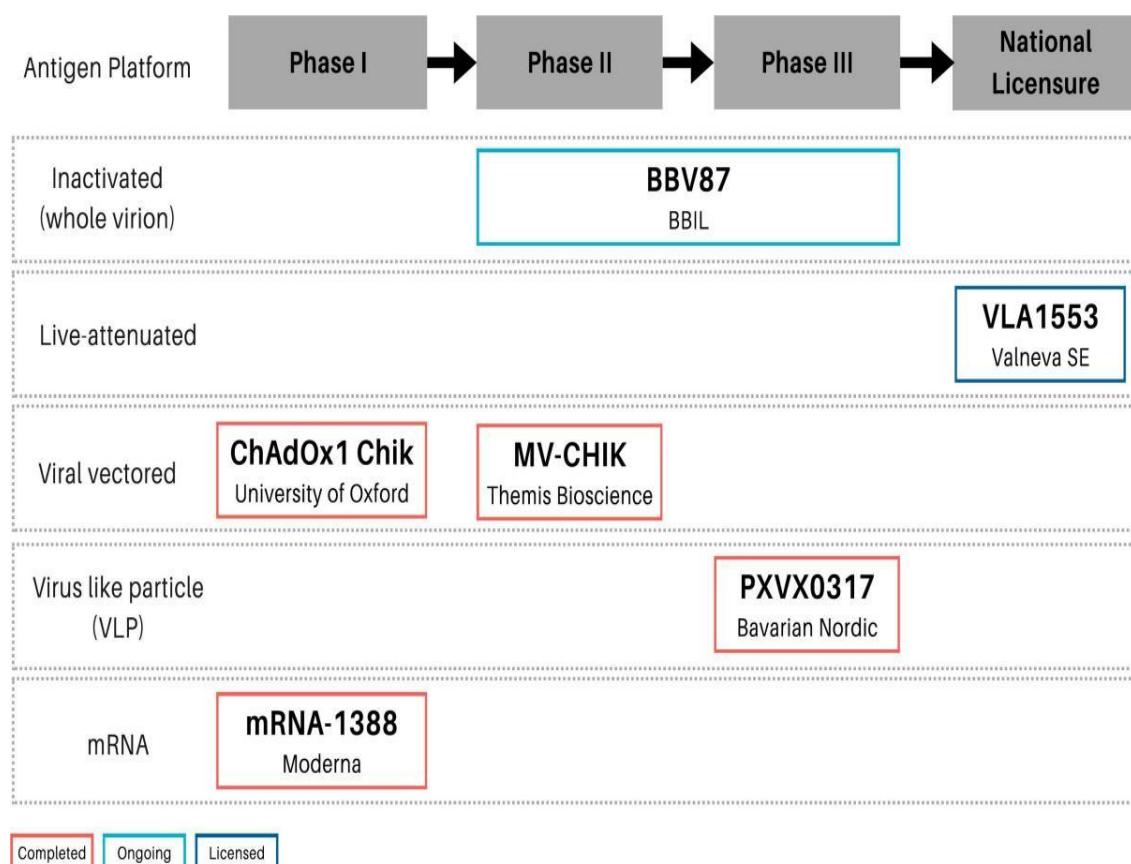


Figure 4: Chikungunya Vaccine Development Progress Chart (Partial, Incomplete) for different technology routes^[3]

We cannot overlook the limitations of current prevention and control strategies. The management of Chikungunya fever primarily depends on controlling mosquito vectors, and the sustainability of this approach is influenced by various factors. Research indicates that the lack of effective mosquito control measures, especially in rapidly urbanizing areas, increases the risk of virus transmission^[53]. Additionally, the accessibility of existing treatment drugs remains a critical issue, particularly in resource-limited countries and regions, where difficulties in obtaining vaccines and medications may undermine control efforts. Therefore, further exploration of more effective prevention and control strategies and technologies is essential to ensure lasting protection against the threat posed by the Chikungunya virus.

Furthermore, establishing a more open and efficient system for international cooperation will be crucial for the successful development of Chikungunya virus vaccines in the future. Enhancing international data sharing and conducting multi-center clinical trials will help accelerate vaccine development and approval. Vaccine development should not be confined to a single country or region; global collaboration can effectively integrate resources and technologies, thereby optimizing the vaccine development process. For vaccine clinical trials, regulatory agencies across different countries should coordinate the standardization and mutual recognition of

neutralizing antibody measurement methods and licensing guidelines. This coordination will expedite the approval processes for Chikungunya vaccines, as well as vaccines for general epidemics and pandemics, ensuring that vaccines can rapidly address global public health needs^[54-56].

In conclusion, research on the Chikungunya virus will encounter numerous challenges but also presents significant opportunities. By continuously optimizing vaccine design, strengthening multi-disciplinary collaboration, and enhancing public health response measures, we can achieve more effective disease control and elimination. It is important to recognize that only through comprehensive and systematic research and collaboration can we maintain scientific response capabilities to effectively prevent and control Chikungunya fever amid complex epidemics.

Competing interests

The authors declare all financial and non-financial competing interests.

References

- [1] Yu X, Cheng G. Adaptive evolution as a driving force of the emergence and re-emergence of mosquito-borne viral diseases[J]. Viruses, 2022, 14(2): 435.
- [2] Ni J, Wang J, Fang C, et al. A Review of the Latest Control Strategies for Mosquito-Borne Diseases[J]. China CDC Weekly, 2024, 6(33): 852.

[3] Maure C, Khazhidinov K, Kang H, et al. Chikungunya vaccine development, challenges, and pathway toward public health impact[J]. *Vaccine*, 2024, 42(26): 126483.

[4] Gizaw Z, Salubi E, Pietroniro A, et al. Impacts of climate change on water-related mosquito-borne diseases in temperate regions: A systematic review of literature and meta-analysis[J]. *Acta Tropica*, 2024, 258: 107324.

[5] Kronen J, Leuchner M, Küpper T. Zika and Chikungunya in Europe 2100 - A GIS based model for risk estimation[J]. *Travel Medicine and Infectious Disease*, 2024, 60: 102737.

[6] Bętowska A, Hanke J, Krankowska D, et al. Challenges in diagnosing fever in traveler returning from tropical areas - is it dengue or chikungunya? Case report[J]. *Epidemiological Review/Przegląd Epidemiologiczny*, 2022, 76(4).

[7] Bhattacharjee S, Ghosh D, Saha R, et al. Mechanism of immune evasion in mosquito-borne diseases[J]. *Pathogens*, 2023, 12(5): 635.

[8] Sergon K, Njuguna C, Kalani R, et al. Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October 2004[J]. *The American journal of tropical medicine and hygiene*, 2008, 78(2): 333-337.

[9] Josseran L, Paquet C, Zehgnoun A, et al. Chikungunya disease outbreak, Reunion island[J]. *Emerging infectious diseases*, 2006, 12(12): 1994.

[10] Powers A M, Logue C H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus[J]. *Journal of General Virology*, 2007, 88(9): 2363-2377.

[11] Arankalle V A, Shrivastava S, Cherian S, et al. Genetic divergence of Chikungunya viruses in India (1963 - 2006) with special reference to the 2005 - 2006 explosive epidemic[J]. *Journal of General Virology*, 2007, 88(7): 1967-1976.

[12] Cassadou S, Boucau S, Petit-Sinturel M, et al. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013[J]. *Eurosurveillance*, 2014, 19(13): 20752.

[13] De Oliveira E C, Fonseca V, Xavier J, et al. Introduction of chikungunya virus ECSA genotype into the Brazilian Midwest and its dispersion through the Americas[J]. *PLoS Neglected Tropical Diseases*, 2021, 15(4): e0009290.

[14] Bartholomeeusen K, Daniel M, LaBeaud D A, et al. Chikungunya fever[J]. *Nature Reviews Disease Primers*, 2023, 9(1): 17.

[15] Huq M R, Islam K A, Rahman M A, et al. A Rare Case of Severe Neutropenia Due to Chikungunya Fever Which Improved With Filgrastim[J]. *Cureus*, 2021, 13(12).

[16] Kondo M, Matsushima Y, Nakanishi T, et al. Consideration of serum IL-36 α and β levels trends in two patients with chikungunya fever[J]. *Clinical Case Reports*, 2023, 11(7): e7680.

[17] Hakim M S, Aman A T. Understanding the biology and immune pathogenesis of chikungunya virus infection for diagnostic and vaccine development[J]. *Viruses*, 2022, 15(1): 48.

[18] do Nascimento Costa D M, Machado C E, Neves P D, et al. Chikungunya virus as a trigger for different renal disorders: an exploratory study[J]. *Journal of Nephrology*, 2022, 35(5): 1437-1447.

[19] Mourad O, Makhani L, Chen L H. Chikungunya: an emerging public health concern[J]. *Current infectious disease reports*, 2022, 24(12): 217-228.

[20] Millsapps E M, Underwood E C, Barr K L. Development and application of treatment for chikungunya fever[J]. *Research and Reports in Tropical Medicine*, 2022, 13: 55.

[21] Delgado-Maldonado T, Moreno-Herrera A, Rivera G. Advances in the Development of Non-Structural Protein 1 (NsP1) Inhibitors for the Treatment of Chikungunya Virus Infection[J]. *Mini-Reviews in Medicinal Chemistry*, 2024, 24(22): 1972-1982.

[22] Fraiman P H A, Freire M, Fernandes B, et al. "Clock dial pattern" , a radiologic clue to neuro-chikungunya diagnosis: a case series[J]. *Arquivos de Neuro-psiquiatria*, 2024, 82(01): 001-006.

[23] Zerfu B, Kassa T, Mamo G, et al. High seroprevalence of IgM antibodies against chikungunya among patients with acute febrile illness seeking healthcare in a malaria-endemic area in the Afar Region, Northeast Ethiopia[J]. *SAGE Open Medicine*, 2024, 12: 20503121241276557.

[24] Johnson B W, Russell B J, Goodman C H. Laboratory diagnosis of chikungunya virus infections and commercial sources for diagnostic assays[J]. *The Journal of infectious diseases*, 2016, 214(suppl_5): S471-S474.

[25] Xie L, Wu Y Q, Jiang J Y, et al. An improved alphaviruses - specific RT - qPCR facilitates monitoring and prevention of alphaviruses[J]. *Journal of Medical Virology*, 2024, 96(7): e29788.

[26] Amaral J K, Bilsborrow J B, Schoen R T. Chronic chikungunya arthritis and rheumatoid arthritis: what they have in common[J]. *The American journal of medicine*, 2020, 133(3): e91-e97.

[27] Begum M M, Ulvi O, Karamehic-Muratovic A, et al. Quantifying media effects, its content, and role in promoting community awareness of Chikungunya epidemic in Bangladesh[J]. *Epidemiologia*, 2021, 2(1): 84-94.

[28] Erasmus J H, Rossi S L, Weaver S C. Development of vaccines for chikungunya fever[J]. *The Journal of infectious diseases*, 2016, 214(suppl_5): S488-S496.

[29] Shaikh M S, Faiyazuddin M, Khan M S, et al. Chikungunya virus vaccine: a decade of progress solving epidemiological dilemma, emerging concepts, and immunological interventions[J]. *Frontiers in Microbiology*, 2024, 15: 1413250.

[30] Harrison V R, Eckels K H, Bartelloni P J, et al. Production and evaluation of a formalin-killed Chikungunya vaccine[J]. *The Journal of Immunology*, 1971, 107(3): 643-647.

[31] Kumar M, Sudeep A B, Arankalle V A. Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus[J]. *Vaccine*, 2012, 30(43): 6142-6149.

[32] Edelman R, Tacket C O, Wasserman S S, et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218[J]. *The American journal of tropical medicine and hygiene*, 2000, 62(6): 681-685.

[33] Carrau L, Rezelj V V, Noval M G, et al. Chikungunya virus vaccine candidates with decreased mutational robustness are attenuated in vivo and have compromised transmissibility [J]. *Journal of virology*, 2019, 93(18): 10.1128/jvi.00775-19.

[34] Weiss C M, Liu H, Riemersma K K, et al. Engineering a fidelity-variant live-attenuated vaccine for chikungunya virus[J]. *npj Vaccines*, 2020, 5(1): 97.

[35] Roques P, Fritzer A, Dereuddre-Bosquet N, et al. Effectiveness of CHIKV vaccine VLA1553 demonstrated by passive transfer of human sera[J]. *JCI insight*, 2022, 7(14): e160173.

[36] Harris E. FDA approves first chikungunya vaccine[J]. *JAMA*, 2023, 330(23): 2241-2241.

[37] Weber W C, Streblow D N, Coffey L L. Chikungunya virus vaccines: a review of IXCHIQ and PXVX0317 from pre-clinical evaluation to licensure[J]. *BioDrugs*, 2024, 38(6): 727-742.

[38] Chen L H, Fritzer A, Hochreiter R, et al. From bench to clinic: the development of VLA1553/IXCHIQ, a live-attenuated chikungunya vaccine[J]. *Journal of Travel Medicine*, 2024, 31(7): taae123.

[39] Ly H. Ixchiq (VLA1553): The first FDA-approved vaccine to prevent disease caused by Chikungunya virus infection[J]. *Virulence*, 2024, 15(1): 2301573.

[40] Erasmus J H, Auguste A J, Kaelber J T, et al. A chikungunya fever vaccine utilizing an insect-specific virus platform[J]. *Nature medicine*, 2017, 23(2): 192-199.

[41] Thompson D, Metz S W, Abad C, et al. Immunological implications of diverse production approaches for Chikungunya virus-like particle vaccines[J]. *Vaccine*, 2022, 40(22): 3009-3017.

[42] Chang L J, Dowd K A, Mendoza F H, et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: a phase 1 dose-escalation trial[J]. *The Lancet*, 2014, 384(9959): 2046-2052.

[43] Chen G L, Coates E E, Plummer S H, et al. Effect of a chikungunya virus - like particle vaccine on safety and tolerability outcomes: a randomized clinical trial[J]. *Jama*, 2020, 323(14): 1369-1377.

[44] Geng K, Rice-Boucher P J, Kashentseva E A, et al. Engineering a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation[J]. *Viruses*, 2023, 15(11): 2277.

[45] Jaan S, Zaman A, Ahmed S, et al. mRNA vaccine designing using chikungunya virus E glycoprotein through immunoinformatics-guided approaches[J]. *Vaccines*, 2022, 10(9): 1476.

[46] Liu J, Lu X, Li X, et al. Construction and immunogenicity of an mRNA vaccine against chikungunya virus[J]. *Frontiers in Immunology*, 2023, 14: 1129118.

[47] Ge N, Sun J, Liu Z, et al. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses[J]. *Virologica Sinica*, 2022, 37(2): 266-276.

[48] Campos R K, Preciado-Llanes L, Azar S R, et al. A single and un-adjuvanted dose of a chimpanzee adenovirus-vectorized vaccine against chikungunya virus fully protects mice from lethal disease[J]. *Pathogens*, 2019, 8(4): 231.

[49] Caillava A J, Alfonso V, Tejerina Cibello M, et al. A vaccine candidate based on baculovirus displaying chikungunya virus E1-E2 envelope confers protection against challenge in mice[J]. *Journal of virology*, 2024, 98(11): e01017-24.

[50] Rossi S L, Comer J E, Wang E, et al. Immunogenicity and efficacy of a measles virus-vectorized chikungunya vaccine in nonhuman primates[J]. *The Journal of infectious diseases*, 2019, 220(5): 735-742.

[51] Arif M, Tauran P, Kosasih H, et al. Chikungunya in Indonesia: Epidemiology and diagnostic challenges[J]. *PLoS neglected tropical diseases*, 2020, 14(6): e0008355.

[52] Pathak H, Mohan M C, Ravindran V. Chikungunya arthritis[J]. Clinical Medicine, 2019, 19(5): 381-385.

[53] Njoroge T M, Hamid-Adiamoh M, Duman-Scheel M. Maximizing the potential of attractive targeted sugar baits (ATSBs) for integrated vector management[J]. Insects, 2023, 14(7): 585.

[54] Farlow A, Torreele E, Gray G, et al. The future of epidemic and pandemic vaccines to serve global public health needs[J]. Vaccines, 2023, 11(3): 690.

[55] Baylis S A, Knezevic I, Almond N M. Harmonising the measurement of neutralising antibodies against chikungunya virus: a path forward for licensing of new vaccines?[J]. The Lancet Microbe, 2024, 5(9).

[56] Cherian N, Bettis A, Deol A, et al. Strategic considerations on developing a CHIKV vaccine and ensuring equitable access for countries in need[J]. npj Vaccines, 2023, 8(1): 123.